CPSC 457 — Principles of Operating Systems
Daniel de Castro
Tutorial 20: System call hooking (hijacking)
Expected Time: 30-40 minutes
April 03, 2012

In this exercise, we are going to hook (or “hijack”) a system call. In order to do something unharmful,
we will only “change” the system call sys_open so it prints a message in /var/log/messages before
opening a file. Remember that you are writing a kernel module, so you can basically use the same
procedure to change the behavior of your operating system completely.

IMPORTANT: Boot your VM with its original kernel (to assure no other change will affect this
exercise). If you are using Fedora 10, the kernel should be 2.6.27.41-170.2.117.fc10.i686.

1. Create a directory hookinglkm and access this directory.

2. As we have done before, create the Makefile to our new module.
obj-m += hooking.o

all:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) modules

clean:
make -C /lib/modules/$(shell uname -r)/build M=$(PWD) clean

3. To implement our hook, we need to know where the system call table is in memory. We will
initially look for it manually. For that, we will look at the System.map file for the current
kernel.

$ cat /boot/System.map--uname -r> | grep sys_call table

Notice that we are enclosing the uname -r command with the “left single quote” symbol
(which, on an standard US English keyboard, usually shares the key with the tilde, located over
the “Tab” key).

The result should be something like the output below:

c06bldb0 R sys_call table

The first column indicates the memory address for the system call table. Notice that your value
might be different. The second column indicates that it is a read-only memory area. We will
come back to that. Memorize the first column. Or, write it down not to forget it.

Here is a good space for that: (syscall table address)

CPSC 457 — Tutorial 20 April 03, 2012 1/4

4. Let us start writing the code for our new module in hooking.c.

#include <linux/module.h> /* Needed by all modules */
#include <linux/init.h> /* Needed for the macros */
#include <asm/unistd.h> /* Needed for _ NR close */

#include <linux/syscalls.h> /* Needed for sys close */
MODULE_LICENSE(“GPL"); /* Don't forget declaring license */

/* Initializer of our LKM */
static int __init hooking_ start(void)

{
/* In the line below, write the address you found */
unsigned long *table = (unsigned long *) 0xc06bldb0;
/* Now we check if that address really refers to the
system call table. We do this by checking if the
item for an arbitrary syscall (e.g., close) does
refer to that syscall function address */
if (table[_NR close] == (unsigned long) sys_close) {
printk(KERN_INFO “HOOK: Found it!\n");
} else {
/* if it's incorrect, returns -1, so the module
is not loaded */
printk (KERN_INFO “HOOK: Nah! Check it again!\n”);
return -1;
}
return 0;
}

/* “Destructor” of our LKM */
static void __exit hooking_end(void)

{
printk (KERN_ INFO “HOOK: Goodbye kernel”);

}

module init(hooking start);
module exit(hooking exit);

Notice that we are prepending all the messages with “HOOK?”. We do that so it gets easier to
locate our messages in the file /var/log/messages.

5. Compile our module using make and try to load it into the kernel using:
$ sudo insmod hooking.ko

Now, if the loading is successful, you will find the “Found it” message in the file
/var/log/messages.

Otherwise, you will receive a “Operation not permitted” message. In this case, you should
recheck the syscall table address you used and try again, i.e., go back to step 3.

CPSC 457 — Tutorial 20 April 03, 2012 2/4

Note: Some developers might prefer to keep an extra Terminal window open, in which the
following command is executed:

$ sudo tail -f /var/log/messages
By doing this, one can easily verify what messages is being sent to that file.

6. If you could successfully load your kernel: Congratulations, you found the system call table.
Now we have to modify it. First, remove our module from the kernel.

$ sudo rmmod hooking

7. Now, we declare a variable to store the old system call and we also create our own system call.
Before the initializer, write the following code:

/* variable to store the original call */
asmlinkage int (*o_open) (const char*, int, int);

/* Our new version of sys open, that prints a message and call
the original syscall */
asmlinkage int our_ sys_open(const char * file, int flags, int mode)

{
printk(KERN_INFO “HOOK: A file (%s) was opened\n”, file);
return o _open(file, flags, mode);

8. Now, we actually perform the “hook”. In the hooking_start function, include the following
lines before “return 0”:
o_open = table[_NR open]; /* Saves the original address in o_open */

table[_ NR open] = our_sys open; /* Changes the table to point to our
function */

And, when removing the module, we should return the table to the normal. So hooking_end
should include the following:

table[_NR open] = o_open;
9. As atest, let us compile our module and try to install it.

S make
$ sudo insmod hooking.ko

At this point, you should receive several error messages, starting by “OOPS...”. In Fedora 10,
a box might appear advising that the kernel is compromised. The reason for all of this is that, if

you recall, the memory area for sys_call_table is read-only (see step 3).

10. If you did follow step 9, now you might need to reboot your VM. Remember to choose the
original kernel when booting.

CPSC 457 — Tutorial 20 April 03, 2012 3/4

11. There are several ways for modifying the memory permissions. Most of them rely on using
specific kernel functions, such as set_memory_rw and set_memory_ro or set_page_rw and
set_page_ro. While that would be suggested, you might be using different versions of kernel,
these functions might not work. In order to complete our implementation, we will use a kernel
independent approach, by disabling the memory protection.

Include the following functions in your program:

static void disable_ page protection(void) ({

unsigned long value;
asm volatile("mov %%cr0,%0" : "=r" (value));
if (value & 0x00010000) ¢
value &= ~0x00010000;
asm volatile("mov %0,%%cr0": : "r" (value));

}
}

static void enable_ page protection(void) ({

unsigned long value;
asm volatile("mov %%cr0,%0" : "=r" (value));
if (!(value & 0x00010000)) ¢
value |= 0x00010000;
asm volatile("mov %0,%%cr0": : "r" (value));

}

12. Now, modify both functions (hooking_start and hooking_end), to disable page protection
before modifying the system call table and enabling it back again after the operation. For
example, for hooking_start, you should see something like the following:

disable page protection();

o open = table[NR open]; /* Saves the original address in o open */
table[__NR open] = our_sys_open; /* Changes the table to point to our
enable page protection;

Don't forget to modify hooking_end to disable the page protection only when modifying the
table, re-enabling it as the table is restored.

13. Finally, compile and install the module. When you check the /var/log/messages file, you will
notice that the system constantly keeps opening different files for the most different reasons. Do
not forget removing the module from the kernel (using rmmod), otherwise the log file will
quickly increase in size.

14. If you want to practice at home, how about to implement the “Do not trace me” feature (from
HW4) into a LKM?

15. Another interesting exercise would be to use the functions set_memory_rw/set_memory_ro(or

similar) to modify only the memory page that refers to the system call table (and only when
necessary).

CPSC 457 — Tutorial 20 April 03, 2012 4/4

